Bioinformatics; Code: PM E10

A- Basic Information

Programme(s) on which the course is given:	Bachelor of Pharmacy (Pharm D)
Department responsible for offering the course:	Microbiology and Immunology
Department responsible for teaching the course:	Microbiology and Immunology
Academic year:	Level four- Fall semester
Course title and code:	Bioinformatics, PM E10
Prerequisite:	Registration
Contact hours (Credit hours):	Lectures: 1 (1), Practical: 2 (1), Total: 3 (1+1)
Course Coordinator:	Dr. Ann Ayman Elshamy

B- Professional Information

1 - Overall Aim of the Course

The course aims to know all the gene sequences in many organisms and to understand all the genes' functions in all these organisms, and how all the genes interact locally to produce a phenotype, and how they interact globally to explain the similarities and differences observed in the great diversity of life. Bioinformatics fuses biology with mathematics (especially statistics) and computer science (algorithms and their implementations to: find genes within a genomic sequence, align sequences in databases to determine the degree of matching, predict the structure and function of gene products, describe the interactions between genes and gene products at a global level within the cell and between organisms, postulate phylogenetic relationships for sequences, DNA and protein structures, characterization of genomic DNA, genome organization in bacteria, yeasts, & humans, sequences alignments, polymorphisms & gene mapping, genome sequencing, web and internet sites for comparing and identifying protein domains

2 - Course Learning Outcomes

Domain 1: Fundamental knowledge

The students should be able to:

ne students should be able to.				
Program key elements	Course learning outcomes			
1.1.1.8 Explain basics of bioinformatics,	1.1.1.8 Demonstrate understanding of			
biotechnology, and epigenetics.	knowledge of pharmaceutical and			
	biomedical sciences and all about genes			
	and gene sequences			
1.1.2.1 Make use of genetic,	1.1.2.1 Utilize the proper pharmaceutical			
microbiological & epidemiological terms	and medical terms, abbreviations and			
in pharmacy practice.	symbols in pharmacy practice including			
	gene and protein sequences			

Domain 2: Professional and ethical practice

The students should be able to:

Program key elements	Course learning outcomes			
2.2.4.3 Follow the bases of bioinformatics	2.2.4.3 Adopt the principles of			
for proper bioequivalence applications.	bioinformatics using softwares and internet			
	sites			

Domain 3: Pharmaceutical care

The students should be able to:

Program key elements	Course learning outcomes
3.1.1 Integrate the basis of body physiology and genomics in health and disease states for various disorders management.	3.1.1 Apply the principles of body function and basis of genomics in health and disease states
	3.1.1.a know all the gene sequences in many organisms and to understand all the genes' functions in all these organisms
	3.1.1.b know how all the genes interact locally to produce a phenotype
	3.1.1.c Learn how genes interact globally to explain the similarities and differences observed in the great diversity of life.

Domain 4: Personal practice

The students should be able to:

Program key elements	Course learning outcomes
4.3.1 Apply professional self-assessment to enhance personal competencies.	4.3.1 Perform self-assessment to enhance professional and personal competencies.
4.3.2 Apply self-learning required for continuous professional development.	4.3.2 Practice independent learning on different softwares needed for continuous professional development.

3 - Course Contents

Week	Lectures		Practical		
	Topic	Credit hrs. (1)	Topics	Credit hrs. (1)	
1	An introduction to bioinformatics	1	Introduction to Bioinformatics	1	
2	Biological databases	1	Biological Databases	1	
3	Open reading frame (ORF) analysis	1	Open reading frame (ORF) analysis	1	
4	BLAST search tools and analysis	1	BLAST search tools and analysis	1	
5		Mid	Midterm		
6	Primer design	1	Tutorial 1	1	
7	Multiple sequence alignment and membrane proteins	1	Primer design	1	
8	Proteomics; Protein Classification and Structure prediction	1	Multiple sequence alignment	1	
9	Programs: CDD, PSORT	1	Proteomics; Protein Classification and Structure prediction	1	
10	Phylogenetic analysis 1	1	Tutorial 2	1	
11	Phylogenetic analysis 2	1	Practical exam		
12	Formative assessment	1		·	
13					
14	Final Written Exam				

4 - Teaching and Learning Methods:

- 4.1- Lectures (tools: board, projector, handouts).
- 4.2- Practical sessions (online interactive sessions, in-lab tutorials)

5 - Student Assessment Methods:

Written Midterm exam	To assess	The ability of students to follow-up the course subjects.	
Practical exam and assessment of semester work (class activities)	To assess	The ability of students to apply and practice scientific knowledge	
Final written exam	To assess	The overall outcomes	

Assessment Schedule

Assessment 1	Periodic exams	Week 5
Assessment 2	Practical exam	Week 11
Assessment 3	Final written exam	Week 14

Weighting of Assessments	marks
Periodical examination	15
Final-term Examination	60
Oral Examination	
Practical Examination	25
Other types of assessment	
Total	100

6 - List of References

- Bishop, O. T. ed. (2014). Bioinformatics and Data Analysis in Microbiology.
 Caister Academic Press.
- Choudhuri, S. ed. (2014). Bioinformatics For Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools. Elsevier.
- Christensen, H. ed. (2018). Introduction to Bioinformatics in Microbiology. Cham: Springer International Publishing doi:10.1007/978-3-319-99280-8.
- Singh, D. B., and Pathak, R. K. eds. (2022). Bioinformatics: Methods and Applications. Chennai, India: Elsevier doi:10.1016/C2020-0-03034-3.
- Hasija, Y. ed. (2023). All About Bioinformatics: From Beginner to Expert. Elsevier.

7 - Facilities Required for Teaching and Learning

Modern libraries, audiovisual tools, computers

Course Members:

Prof. Dr. Khaled M. Anwar Aboshanab Assoc. Prof. Dr. Sarra Ebrahim Saleh Dr. Ann Ayman Elshamy Course Coordinator: Dr. Ann Ayman Elshamy

Ann Elshamy

Acting Head of Department: Assoc. Prof. Dr. Sarra Ebrahim Saleh

Sarra Saleh

Course name	Bioinformatics
Code	PM E10

Course Plan & Matrices

Cou	irse Contents	Program Key Elements	Course learning outcomes	Teaching and Learning Methods	Student Assessment Methods
Week # 1	An introduction to bioinformatics P: Introduction to bioinformatics	1.1.1.8, 1.1.2.1	1.1.1.8, 1.1.2.1	Lectures, Practical training	Periodic, Written, Practical
Week # 2	Biological databases P: Biological databases	1.1.1.8, 1.1.2.1, 2.2.4.3	1.1.1.8, 1.1.2.1, 2.2.4.3	Lectures, Practical training, Assignments	Periodic, Written, Practical
Week # 3	Open reading frame (ORF) analysis P: Open reading frame (ORF) analysis	1.1.1.8, 1.1.2.1, 2.2.4.3, 3.1.1, 4.3.1, 4.3.2	1.1.1.8, 1.1.2.1, 2.2.4.3, 3.1.1.a, 3.1.1.b, 3.1.1.c, 4.3.1, 4.3.2	Lectures, Practical training, Assignments	Periodic, Written, Practical
Week # 4	BLAST search tools and analysis P: BLAST search tools and analysis	1.1.1.8, 1.1.2.1, 3.1.1 4.3.1, 4.3.2	1.1.1.8, 1.1.2.1, 3.1.1.a, 3.1.1.b, 3.1.1.c, 4.3.1, 4.3.2	Lectures, Practical training, Assignments	Written, Practical
Week # 5			Midterm		
Week # 6	Primer design P: Tutorial 1	1.1.1.8, 1.1.2.1	1.1.1.8, 1.1.2.1	Lectures, Open discussion	Written, Practical
Week # 7	Multiple sequence alignment and membrane proteins	1.1.1.8, 1.1.2.1	1.1.1.8, 1.1.2.1	Lectures, Practical training, Assignments	Written, Practical
Week # 8	P: Primer design Proteomics; Protein Classification and Structure prediction P: Multiple sequence alignment	1.1.1.8, 1.1.2.1, 2.2.4.3	1.1.1.8, 1.1.2.1, 2.2.4.3	Lectures, Practical training, Assignments	Written, Practical
Week # 9	Programs: CDD, PSORT	1.1.1.8, 1.1.2.1,	1.1.1.8, 1.1.2.1,	Lectures,	Written, Practical

	P: Proteomics; Protein Classification and Structure prediction	2.2.4.3	2.2.4.3	Practical training, Assignments	
Week # 10	Phylogenetic analysis 1 P: Tutorial 2	1.1.1.8, 1.1.2.1	1.1.1.8, 1.1.2.1	Lectures, Open discussion	Written, Practical
Week # 11	Phylogenetic analysis 2 P: Practical exam	1.1.1.8, 1.1.2.1	1.1.1.8, 1.1.2.1	Lectures	Written
Week # 12	Formative assessment			Brainstorming	Written

In case of emergency or necessity, the study will be converted into recorded and interactive lectures.

تم الاعتماد في محضر مجلس قسم الميكروبيولوجيا والمناعة جلسة رقم (11) بتاريخ 2023/8/31